Please wait a minute...
电网技术
 
      设为首页      加入收藏
 
 首页 | 电网技术 | 期刊浏览 | 投稿指南 | 期刊订阅 | 广告服务 | 联系我们 | Email Alert |RSS |留 言 板
电网技术  2018, Vol. 42 Issue (8): 2562-2569    DOI: 10.13335/j.1000-3673.pst.2017.1180
  电力系统 本期目录 | 过刊浏览 | 高级检索 |
计及日照强度时间周期特征的光伏并网系统风险评估方法
魏勇1, 李浩然2, 范雪峰1, 牛志成1, 王建2, 熊小伏2
1.国网甘肃省电力公司 经济技术研究院,甘肃省 兰州市 730050;
2.输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市 沙坪坝区 400044
Risk Assessment Method of PV Integrated Power System Considering Time Periodic Characteristics of Solar Irradiance
WEI Yong1, LI Haoran2, FAN Xuefeng1, NIU Zhicheng1, WANG Jian2, XIONG Xiaofu2
1. Economic Research Institute of State Grid Gansu Electric Power Company, Lanzhou 730050, Gansu Province, China;
2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University), Shapingba District, Chongqing 400044, China;
下载:  PDF(872KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前在含大规模光伏电站的电力系统中长期风险评估中,多采用概率分布模型来模拟日照强度,但该方法无法反映光伏出力及系统风险的时变特征。针对上述不足,以甘肃某光伏电站收集的日照强度数据为样本,对不同时间尺度下的日照强度变化规律进行了分析,用三阶傅里叶函数拟合其月尺度下的变化趋势,用服从三参数威布尔分布的随机变量模拟其日尺度下的波动特征,二者叠加建立日照强度的时间周期特征模型,并验证了该模型的有效性和普适性。根据光电转换关系,进一步建立了光伏电站输出功率的时间周期特征模型,并采用蒙特卡洛模拟法评估光伏并网系统的时变风险。以IEEE-RTS79系统为例,验证了所提方法的有效性。风险评估结果可为电网中长期调度和光伏电站检修决策等提供参考。
服务
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏勇
李浩然
范雪峰
牛志成
王建
熊小伏
关键词:  光伏发电  电力系统  时变风险评估  日照强度  时间周期特征    
Abstract: Using probability distribution models to simulate solar irradiance is a common method for mid- and long-term risk assessment of PV integrated power system at present. However, it cannot reflect the time-varying characteristics of PV output and system risk. Aiming at above deficiencies, this paper analyzes the time-varying patterns of solar irradiance samples collected in a certain photovoltaic plant in different time scales. The trend of solar irradiance in monthly time scale is fitted with a third-order Fourier function. The fluctuation characteristics of solar irradiance in daily time scale is simulated with a three-parameter Weibull distribution. The time periodic characteristics model of solar irradiance can be represented as superposition of above two parts. Validity and universality of this model is verified through case study. According to the relationship of photoelectric transformation, time periodic characteristics model of photovoltaic output is obtained. Furthermore, the time-varying risk of PV integrated power system is assessed through Monte Carlo simulation. Validity of the proposed method is verified through a case analysis with IEEE- RTS79 system. The result of risk assessment can be applied to mid- and long-term power system dispatching and photovoltaic plant maintenance decision.
Key words:  photovoltaic power generation    power system    time-varying risk assessment    solar irradiance    time periodic characteristics
收稿日期:  2017-05-22                     发布日期:  2018-08-08      期的出版日期:  2018-08-05
ZTFLH:  TM73  
基金资助: 中国博士后科学基金资助项目(2017M612907)
作者简介:  魏勇(1976),男,本科,高级工程师,研究方向为新能源并网及电力系统风险评估,E-mail:425582464@qq.com;李浩然(1992),男,硕士研究生,通信作者,研究方向为电力系统风险评估与气象灾害预警,E-mail:lihaoranwork@foxmail.com;范雪峰(1971),男,工程硕士,教授级高级工程师,研究方向为电力系统分析与电网规划,E-mail:lfrankfrank605@163.com;牛志成(1972),男,本科,工程师,研究方向为新能源发电等相关研究,E-mail:gsjypc@163.com;王建(1986),男,博士(后),讲师,研究方向为电力系统风险评估及气象灾害预警、电力系统保护与控制,E-mail:wangrelay@foxmail.com;熊小伏(1962),男,博士,教授,博士生导师,研究方向为智能电网、电力系统保护与控制、电力系统风险评估及气象灾害预警,E-mail:cquxxf@vip.sina.com。
引用本文:    
魏勇, 李浩然, 范雪峰, 牛志成, 王建, 熊小伏. 计及日照强度时间周期特征的光伏并网系统风险评估方法[J]. 电网技术, 2018, 42(8): 2562-2569.
WEI Yong, LI Haoran, FAN Xuefeng, NIU Zhicheng, WANG Jian, XIONG Xiaofu. Risk Assessment Method of PV Integrated Power System Considering Time Periodic Characteristics of Solar Irradiance. POWER SYSTEM TECHNOLOGY, 2018, 42(8): 2562-2569.
链接本文:  
http://www.dwjs.com.cn/CN/10.13335/j.1000-3673.pst.2017.1180  或          http://www.dwjs.com.cn/CN/Y2018/V42/I8/2562
[1] 龚莺飞,鲁宗相,乔颖,等.光伏功率预测技术[J].电力系统自动化,2016,40(4):140-151.
Gong Yingfei,Lu Zongxiang,Qiao Ying,et al.An overview of photovoltaic energy system output forecasting technology[J].Automation of Electric Power Systems,2016,40(4):140-151 (in Chinese).
[2] 丁明,鲍玉莹,毕锐.应用改进马尔科夫链的光伏出力时间序列模拟[J].电网技术,2016,40(2):459-464.
Ding Ming,Bao Yuying,Bi Rui.Simulation of PV output time series used improved Markov chain[J].Power System Technology,2016,40(2):459-464(in Chinese).
[3] 罗钢,石东源,陈金富,等.风光发电功率时间序列模拟的MCMC方法[J].电网技术,2014,38(2):321-327.
Luo Gang,Shi Dongyuan,Chen Jinfu,et al.A Markov chain Monte Carlo method for simulation of wind and solar power time series[J].Power System Technology,2014,38(2):321-327(in Chinese).
[4] Huan Long,Zhang Zijun,Yan Su.Analysis of daily solar power prediction with data-driven approaches[J].Applied Energy,2014(126):29-37.
[5] Dabra V,Paliwal K K,Sharma P,et al.Optimization of photovoltaic power system:a comparative study[J].Protection and Control of Modern Power Systems,2017,2(1):3-1-11.
[6] 高阳,张碧玲,毛京丽,等.基于机器学习的自适应光伏超短期出力预测模型[J].电网技术,2015,39(2):307-311.
Gao Yang,Zhang Biling,Mao Jingli,et al.Machine learning-based adaptive very-short-term forecast model for photovoltaic power[J].Power System Technology,2015,39(2):307-311(in Chinese).
[7] 王昕,黄柯,郑益慧,等.基于萤火虫算法—广义回归神经网络的光伏发电功率组合预测[J].电网技术,2017,41(2):455-461.
Wang Xin,Huang Ke,Zheng Yihui,et al.Combined PV power forecast based on firefly algorithm-generalized regression neural network[J].Power System Technology,2017,41(2):455-461(in Chinese).
[8] 董雷,周文萍,张沛,等.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45.
Dong Lei,Zhou Wenping,Zhang Pei,et al.Short-term photovoltaic output forecast based on dynamic Bayesian network theory[J].Proceedings of the CSEE,2013,33(S1):38-45(in Chinese).
[9] 程泽,刘冲,刘力.基于相似时刻的光伏出力概率分布估计方法[J].电网技术,2017,41(2):448-455.
Cheng Ze,Liu Chong,Liu Li.A method of probabilistic distribution estimation of PV generation based on similar time of day[J].Power System Technology,2017,41(2):448-455(in Chinese).
[10] Sarkar S,Ajjarapu V.MW resource assessment model for a hybrid energy conversion system with wind and solar resources[J].IEEE Transactions on Sustainable Energy,2011,2(4):383-391.
[11] Ren Z,Yan W,Zhao X,et al.Chronological probability model of photovoltaic generation[J].IEEE Transactions on Power Systems,2014,29(3):1077-1088.
[12] 王守相,王亚旻,刘岩,等.基于经验模态分解和ELM神经网络的逐时太阳能辐照量预测[J].电力自动化设备,2014,34(8):7-12.
Wang Shouxiang,Wang Yamin,Liu Yan,et al.Hourly solar radiation forecasting based on EMD and ELM neural network[J].Electric Power Automation Equipment,2014,34(8):7-12(in Chinese).
[13] Tina G,Gagliano S,Raiti S.Hybrid solar/wind power system probabilistic modelling for long-term performance assessment[J].Solar Energy,2006,80(5):578-588.
[14] Park J,Liang W,Choi J,et al.A probabilistic reliability evaluation of a power system including Solar/Photovoltaic cell generator[C]// 2009 IEEE Power Energy Society General Meeting.Calgary:IEEE,2009:1-6.
[15] 张世翔,丁倩.风光互补发电系统的可靠性分析[J].中国电力,2015,48(6):8-13.
Zhang Shixiang,Ding Qian.Reliability analysis on wind and solar hybrid system[J].Electric Power,2015,48(6):8-13(in Chinese).
[16] 程思萌,朱自伟.太阳光辐照度概率分布参数对电网可靠性的影响[J].电测与仪表,2015,52(22):36-41.
Cheng Simeng,Zhu Ziwei.Effect of different solar irradiance parameters on reliability evaluation of the grid[J].Electrical Measurement & Instrumentation,2015,52(22):36-41(in Chinese).
[17] 赵继超,袁越,傅质馨,等.基于Copula理论的风光互补发电系统可靠性评估[J].电力自动化设备,2013,33(1):124-129.
Zhao Jichao,Yuan Yue,Fu Zhixin,et al.Reliability assessment of wind-PV hybrid generation system based on Copula theory[J].Electric Power Automation Equipment,2013,33(1):124-129(in Chinese).
[18] 熊小伏,王建,袁峻,等.时空环境相依的电网故障模型及在电网可靠性评估中的应用[J].电力系统保护与控制,2015,43(15):28-35.
Xiong Xiaofu,Wang Jian,Yuan Jun,et al.Temporal and spatial environments dependent power grid failure method and its application in power grid reliability assessment[J].Power System Protection and Control,2015,43(15):28-35(in Chinese).
[19] 封国林,侯威,支蓉,等.极端气候事件的检测、诊断与可预测性研究[M].北京:科学出版社,2012:234-241.
[20] Jian Wang,Xiaofu Xiong,Ning Zhou,et al.Time-varying failure rate simulation model of transmission lines and its application in power system risk assessment considering seasonal alternating meteorological disasters[J].IET Generation Transmission & Distribution,2016,10(7):1582-1588.
[21] 王建,熊小伏,梁允,等.地理气象相关的输电线路风险差异评价方法及指标[J].中国电机工程学报,2016,36(5):1252-1259.
Wang Jian,Xiong Xiaofu,Liang Yun,et al.Geographical and meteorological factor related transmission line risk difference assessment:method and indexes[J].Proceedings of the CSEE,2016,36(5):1252-1259(in Chinese).
[22] 王建,熊小伏,李哲,等.气象环境相关的输电线路故障时间分布特征及模拟[J].电力自动化设备,2016,36(3):109-114,123.
Wang Jian,Xiong Xiaofu,Li Zhe,et al.Time distribution of weather-related transmission line failure and its fitting[J].Electric Power Automation Equipment,2016,36(3):109-114,123(in Chinese).
[23] 杨振海,程维虎,张军舰.拟合优度检验[M].北京:科学出版社,2011:14-36.
[24] Qin Zhilong,Li Wenyuan,Xiong Xiaofu.Incorporating multiple correlations among wind speeds,photovoltaic powers and bus loads in composite system reliability evaluation[J].Applied Energy,2013 (110):285-294.
[25] 高英,谢开贵,胡博,等.考虑光伏出力与负荷相关性的光伏电站容量可信度评估[J].电力系统保护与控制,2013,41(14):1-6.
Gao Ying,Xie Kaigui,Hu Bo,et al.Photovoltaic power capacity credit evaluation model considering the correlation between photovoltaic power generation and system load[J].Power System Protection and Control,2013,41(14):1-6(in Chinese).
[1] 韩宇奇, 何宜倩, 楼凤丹, 王彦波, 郭创新. 基于SDN的动态优化路由策略在信息物理融合电力系统连锁故障中的研究与应用[J]. 电网技术, 2018, 42(8): 2620-2629.
[2] 何剑. 泛欧电力系统概率充裕性评估应用及启示[J]. 电网技术, 2018, 42(8): 2681-2686.
[3] 王建, 熊小伏, 陈璟, 胡剑. 振荡电流作用下的架空线路温升响应计算[J]. 电网技术, 2018, 42(8): 2416-2422.
[4] 饶成骄, 郭成, 马宁宁, 张晨曦, 王德林. 考虑水轮机水锤效应的电网频率变化的解析方法[J]. 电网技术, 2018, 42(6): 1892-1898.
[5] 张旭, 陈云龙, 岳帅, 查效兵, 张东英, 薛磊. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6): 1793-1803.
[6] 张涛, 顾洁. 高比例可再生能源电力系统的马尔科夫短期负荷预测方法[J]. 电网技术, 2018, 42(4): 1071-1078.
[7] 王育飞, 付玉超, 孙路, 薛花. 基于混沌-RBF神经网络的光伏发电功率超短期预测模型[J]. 电网技术, 2018, 42(4): 1110-1116.
[8] 熊林云, 王杰. 三区延迟电力系统鲁棒负荷频率控制研究[J]. 电网技术, 2018, 42(3): 894-902.
[9] 苏建军, 郭跃进, 刘萌, 张国辉, 王大鹏. 紧急切负荷措施的温控负荷控制策略及概率模型[J]. 电网技术, 2018, 42(3): 911-917.
[10] 杨国清, 付菁, 王德意, 贾嵘, 李润秋. 基于一主三从博弈的风-水-气区域电力系统调度研究[J]. 电网技术, 2018, 42(2): 495-502.
[11] 邬明亮, 戴朝华, 邓文丽, 高岩, 陈化博, 陈维荣. 电气化铁路背靠背光伏发电系统及控制策略[J]. 电网技术, 2018, 42(2): 541-547.
[12] 刘萌, 张岩, 王大鹏, 张国辉, 王昕. 电力系统大功率缺额下空调负荷群集的分散自律控制策略[J]. 电网技术, 2017, 41(9): 3050-3057.
[13] 左剑, 张程稳, 肖逸, 李银红, 段献忠. 基于灰狼优化算法的多机电力系统稳定器参数最优设计[J]. 电网技术, 2017, 41(9): 2987-2995.
[14] 何宇斌, 郭嘉, 沈俭荣, 郭创新, 朱炳铨, 徐立中. 基于风险节点电价的互联系统分散协同调度方法[J]. 电网技术, 2017, 41(8): 2462-2468.
[15] 梁琛, 王鹏, 韩肖清, 秦文萍, 王猛, 宋述勇, 王金浩. 计及系统动态可靠性评估的光伏电站储能经济配置[J]. 电网技术, 2017, 41(8): 2639-2646.
[1] TANG Yong. New Progress in Research on Multi-Time Scale Unified Simulation and Modeling for AC/DC Power Systems[J]. Power System Technology, 2009, 33(16): 1 -8 .
[2] ZHONG Wu-zhi SONG Xin-li TANG Yong BU Guang-quan WU Guo-yang LIU Tao. Small Signal Stability Analysis for UHV AC/DC Power Grids[J]. Power System Technology, 2010, 34(3): 1 -4 .
[3] ZHANG Jianhua SU Ling CHEN Yong SU Jing WNAG Li. Energy Management of Microgrid and Its Control Strategy[J]. Power System Technology, 2011, 35(7): 24 -28 .
[4] . A Survey on Detection Algorithm and Restoring Strategy of Dynamic Voltage Restorer[J]. Power System Technology, 2006, 30(6): 23 -29 .
[5] YAO Jun|LIAO Yong|QU Xing-hong|LIU Ren .

Optimal Wind-Energy Tracking Control of Direct-Driven Permanent Magnet
Synchronous Generators for Wind Turbines

[J]. Power System Technology, 2008, 32(10): 11 -15 .
[6] WANG Baoyi, ZHAO Shuo, ZHANG Shaomin. A Distributed Load Forecasting Algorithm Based on Cloud Computing and Extreme Learning Machine[J]. Power System Technology, 2014, 38(2): 526 -531 .
[7] MIAO Xin, ZHANG Dongxia, SUN Dedong. The Opportunity and Challenge of Big Data’s Application in Power Distribution Networks[J]. Power System Technology, 2015, 39(11): 3122 -3127 .
[8] XIAO Yunqi, HE Guanju, WANG Kunpeng, YANG Xiyun. De-Load Control Strategy for Variable Speed Wind Turbine Generation Units Under Constraint of Power Grid[J]. Power System Technology, 2014, 38(2): 456 -462 .
[9] XU Shiyun,WU Ping,ZHAO Bing,SUN Huadong,YI Jun,CHEN Zhanming,BU Guangquan. Coordinated Control Strategy of Interconnected Grid Integrated With UHVDC Transmission Line From Hami to Zhengzhou[J]. Power System Technology, 2015, 39(7): 1773 -1778 .
[10] ZHOU Li, ZHAO Lujun, GAO Weiguo. Application of Sparse Coding in Detection for Abnormal Electricity Consumption Behaviors[J]. Power System Technology, 2015, 39(11): 3182 -3188 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05032083号-3
版权所有:《电网技术》编辑部 电话:010-82812532
技术支持:北京玛格泰克科技发展有限公司