Please wait a minute...
电网技术
 
      设为首页      加入收藏
 
 首页 | 电网技术 | 期刊浏览 | 投稿指南 | 期刊订阅 | 联系我们 | 广告服务 | RSS |留 言 板
电网技术  2018, Vol. 42 Issue (4): 1273-1280    DOI: 10.13335/j.1000-3673.pst.2017.1885
  电力系统 本期目录 | 过刊浏览 | 高级检索 |
高速机械开关单元多场耦合仿真优化设计
田阳1, 田宇2, 李志兵1, 董恩源2, 刘北阳1, 徐晓东1
1.中国电力科学研究院有限公司,北京市 海淀区 100192;
2.大连理工大学 电气工程学院,辽宁省 大连市 116024
Multi-Field Coupling Simulation Optimization of High-Speed Mechanical Switch Unit
TIAN Yang1, TIAN Yu2, LI Zhibing1, DONG Enyuan2, LIU Beiyang1, XU Xiaodong1
1. China Electric Power Research Institute, Haidian District, Beijing 100192, China;
2. School of Electrical Engineering, Dalian University of Technology, Dalian116024, Liaoning Province, China
下载:  PDF(1258KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国正在建设张北±500 kV柔性直流电网示范工程,混合式高压直流断路器是其关键控制和保护设备。快速机械开关单元是混合式直流断路器的关键部件,采用电磁操动机构,机械动作过程涉及电磁场、热场和机械位移场,需要进行多场耦合仿真优化设计。该文开展高速机械开关单元多场耦合仿真优化设计。首先,设计一种基于双线圈推金属盘驱动与双稳态弹簧保持操动机构的高速机械开关单元结构。然后,针对高速机械开关单元动作过程,提出一种能全面反映机构运动、触头碰撞和线圈温升情况的电磁场、热场和运动场多场耦合计算方法。最后,进行高速机械开关单元多场耦合仿真优化设计。初步确定高速机械开关性能提升关键因素,重点分析不同斥力线圈匝数对分闸时间、线圈允许温升及分闸反弹等关键技术指标影响,最终确定高速机械开关各项最优技术参数。仿真结果表明,该文设计高速机械开关单元能在1.8 ms内分闸到达额定绝缘开距,满足技术要求。该文的优化设计为混合式直流断路器快速机械开关优化设计提供理论指导,对于其他快速机械开关设计也有重要参考价值。
服务
加入引用管理器
E-mail Alert
RSS
作者相关文章
田阳
田宇
李志兵
董恩源
刘北阳
徐晓东
关键词:  直流断路器  高速机械开关  斥力机构  多场耦合  分闸反弹    
Abstract: A pilot project of ±500 kV flexible DC power grid is built in China, with hybrid HV circuit-breaker as its key control and protection equipment. Fast mechanical switch unit is the key component for hybrid DC circuit breaker, adopting electromagnetic actuator. Electromagnetic fields, thermal fields and mechanical fields are involved in mechanical action process, so it is needed to carry on multi-field coupling simulation optimization design. Firstly, structure of high speed mechanical switch unit was designed, based on double coil for pushing metal disk and bitable spring holding mechanism. Then, multi-field coupling method was proposed to fully reflect mechanism motion, contact collision and coil temperature rise for the high-speed mechanical switch unit. Finally, multi-field coupling simulation optimization design was carried out for the switch unit. Key factors for performance improvement were preliminarily determined. Influence of different repulsion coil turns on opening time, coil temperature rise and opening bounce was analyzed. Optimal technical parameters were determined. Simulation results show that the high-speed mechanical switch unit can reach rated opening insulation clearance within 1.8 ms. In this paper, the optimal design provides theoretical guidance for fast mechanical switch and important reference for fast mechanical switch design with other structures.
Key words:  DC circuit breaker    high-speed mechanical switch    repulsion mechanism    multi-field coupling    opening
收稿日期:  2017-07-28                出版日期:  2018-04-08      发布日期:  2018-04-08      期的出版日期:  2018-04-08
ZTFLH:  TM721  
基金资助: 国家自然科学基金项目(51277019); 国家电网公司总部科技项目“±500 kV/3000 A直流断路器关键技术研究及设备研制”(GY71-15-078)
作者简介:  田阳(1984),男,通信作者,硕士,工程师,研究方向为高电压试验技术、智能化电器理论,E-mail:tianyang@epri.sgcc.com.cn;田宇(1990),男,博士,研究方向为高压电器和快速高压断路器设计,E-mail:chntianyu@mail.dlut.edu.cn;李志兵(1975),男,博士,教授级高级工程师,长期从事高压开关设备设计、标准化和运行管理等工作;董恩源(1973),男,教授,博士生导师,研究方向为智能化高压电器,E-mail:dey@dlut.edu.cn;刘北阳(1984),男,硕士,高级工程师,主要研究方向高压开关设备研发;徐晓东(1988),女,硕士,工程师,主要研究方向为高压开关设备的研发。
引用本文:    
田阳, 田宇, 李志兵, 董恩源, 刘北阳, 徐晓东. 高速机械开关单元多场耦合仿真优化设计[J]. 电网技术, 2018, 42(4): 1273-1280.
TIAN Yang, TIAN Yu, LI Zhibing, DONG Enyuan, LIU Beiyang, XU Xiaodong. Multi-Field Coupling Simulation Optimization of High-Speed Mechanical Switch Unit. POWER SYSTEM TECHNOLOGY, 2018, 42(4): 1273-1280.
链接本文:  
http://www.dwjs.com.cn/CN/10.13335/j.1000-3673.pst.2017.1885  或          http://www.dwjs.com.cn/CN/Y2018/V42/I4/1273
[1] 高阳,贺之渊,王成昊,等.一种新型混合式直流断路器[J].电网技术,2016,40(5):1320-1325.
Gao Yang,He Zhiyuan,Wang Chenghao,et al.A new hybrid circuit breaker for DC-application[J].Power System Technology,2016,40(5):1320-1325(in Chinese).
[2] 李斌,何佳伟,冯亚东,等.多端柔性直流电网保护关键技术[J].电力系统自动化,2016,40(21):2-12.
Li Bin,He Jiawei,Feng Yadong,et al.Key techniques for protection of multi-terminal flexible DC grid[J].Automation of Electric Power Systems,2016,40(21):2-12(in Chinese).
[3] 李斌,何佳伟.多端柔性直流电网故障隔离技术研究[J].中国电机工程学报,2016,36(1):87-95.
Li Bin,He Jiawei.Research on the DC fault isolating technique in multi-terminal DC system[J].Proceedings of the CSEE,2016,36(1):87-95(in Chinese).
[4] 汤广福,罗湘,魏晓光.多端直流输电与直流电网技术[J].中国电机工程学报,2013,33(10):8-17.
Tang Guangfu,Luo Xiang,Wei Xiaoguang.Multi-terminal HVDC and DC-grid technology[J].Proceedings of the CSEE,2013,33(10):8-17(in Chinese).
[5] 魏晓光,高冲,罗湘,等.柔性直流输电网用新型高压直流断路器设计方案[J].电力系统自动化,2013,37(15):95-102.
Wei Xiaoguang,Gao Chong,Luo Xiang,et al.A novel design of high-voltage DC circuit breaker in HVDC flexible transmission grid[J].Automation of Electric Power Systems,2013,37(15):95-102(in Chinese).
[6] 张文亮,汤涌,曾南超.多端高压直流输电技术及应用前景[J].电网技术,2010,34(9):1-6.
Zhang Wenliang,Tang Yong,Zeng Nanchao.Multi-terminal HVDC transmission technologies and its application prospects in China[J].Power System Technology,2010,34(9):1-6(in Chinese).
[7] Lu W X,Ooi B T.Multiterminal LVDC system for optimal acquisition of power in wind-farm using induction generators[J].IEEE Transactions on Power Electronics,2002,17(4):558-563.
[8] Ooi B T,Wang X.Voltage angle lock loop control of the boost type PWM converter for HVDC application[J].IEEE Transactions on Power Electronics,1990,5(2):229-235.
[9] 徐政,刘高任,张哲任.柔性直流输电网的故障保护原理研究[J].高电压技术,2017,43(1):1-8.
Xu Zheng,Liu Gaoren,Zhang Zheren.Research on fault protection principle of DC grids[J].High Voltage Engineering,2017,43(1):1-8(in Chinese).
[10] 吴金龙,刘欣和,王先为,等.多端柔性直流输电系统直流电压混合控制策略[J].电网技术,2015,39(6):1593-1599.
Wu Jinlong,Liu Xinhe,Wang Xianwei,et al.Research of DC voltage hybrid control strategy for VSC-MTDC system[J].Power System Technology,2015,39(6):1593-1599(in Chinese).
[11] 吴文耿,方春恩,陈军平,等.超快速隔离开关电磁斥力机构设计及试验研究[J].高压电器,2017(4):156-163.
Wu Wengeng,Fang Chunen,Chen Junping,et al.Design and experimental study on electromagnetic repulsion mechanism of ultra-fast disconnect switch[J].High Voltage Apparatus,2017(4):156-163(in Chinese).
[12] 武瑾,庄劲武,王晨,等.电磁斥力机构数学模型的简化与求解[J].中国电机工程学报,2013,33(24):175-182.
Wu Jin,Zhuang Jinwu,Wang Chen,et al.Simplification and solution of the mathematical model to electromagnetic repulsion mechanism[J].Proceedings of the CSEE,2013,33(24):175-182(in Chinese).
[13] 艾绍贵,李秀广,杜玮,等.基于永磁斥力机构的真空快速开关的研究[J].高压电器,2017(2):54-60.
Ai Shaogui,Li Xiuguan,Du Wei,et al.Study on high speed vacuum switch based on permanent magnetic repulsion mechanism[J].High Voltage Apparatus,2017(2):54-60(in Chinese).
[14] 黄瑜珑,张祖安,温伟杰,等.高压直流断路器中电磁斥力快速驱动器研究[J].高电压技术,2014,40(10):3171-3178.
Huang Yulong,Zhang Zu’an,Wen Weijie,et al.Research on an ultrafast driver for HVDC circuit breaker with electromagnetic repulsion mechanism[J].High Voltage Engineering,2014,40(10):3171-3178(in Chinese).
[15] 张祖安,黎小林,陈名,等.混合式高压直流断路器中的快速机械开关研究[J].南方电网技术,2016,10(4):57-62.
Zhang Zu’an,Li Xiaolin,Chen Ming,et al.Research on fast mechanical switch in hybrid HVDC circuit breaker[J].Southern Power System Technology,2016,10(4):57-62(in Chinese).
[16] Tan Y X,Kun Y,Xiang B,et al.Repulsion mechanism applied in resistive-type superconducting fault current limiter[J].IEEE Transactions on Applied Superconductivity,2016,26(6):5602009.
[17] Zhang B J,Tan Y X,Ren L,et al.Interruption capability of a fast vacuum circuit breaker with a short arcing time[C]//2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum.Suzhou:IEEE,2016.
[18] Wu Y F,Wu Y,Rong M Z,et al.Investigation of novel electromagnetic repulsion mechanism including pressure buffer[C]// 2015 3rd International Conference on Electric Power Equipment- Switching Technology(ICEPE-ST).Busan:IEEE,2015:235-239.
[19] 刘路辉,庄劲武,江壮贤,等.混合型中压直流真空断路器的研究[J].高压电器,2014(5):18-23.
Liu Luhui,Zhuang Jinwu,Jiang Zhuangxian,et al.Development of hybrid medium voltage DC vacuum breaker[J].High Voltage Apparatus,2014(5):18-23(in Chinese).
[20] Steurer M,Frohlich K,Holaus W,et al.A novel hybrid current-limiting circuit breaker for medium voltage:Principle and test results[J].IEEE Transactions on Power Delivery,2003,18(2):460-467.
[21] Zhang L C,Yang K,Liu Z Y,et al.Influence of design parameters on electro-magnetic repulsion mechanism performance[C]//2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum.Suzhou:IEEE,2016.
[22] Hou Y S,Shi Z Q,Li S,et al.Co-simulation on the optimization design of high-speed electromagnetic repulsion mechanism of vacuum circuit breaker[C]//2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum.Suzhou:IEEE,2016.
[23] 田宇,朱苛娄,许家源,等.10 kV快速分相断路器样机研制[J].电网技术,2015,39(8):2346-2350.
Tian Yu,Zhu Kelou,Xu Jiayuan,et al.Development of 10 kV high-speed vacuum breaker prototype[J].Power System Technology,2015,39(8):2346-2350(in Chinese).
[24] Dong E Y,Chen Y S,Wang Y X,et al.Experimental study of high-speed hybrid circuit breaker used in fast isolation of faulty power[C]//2013 2nd International Conference on Electric Power Equipment-Switching Technology(ICEPE-ST).Matsue:IEEE,2013.
[25] Zheng Z F,Dong E Y,Zou J Y,et al.Development of a high speed vacuum switch rated voltage 3.6kV[J].Applied Mechanics and Materials,2011,52-54:2122-2127.
[26] 史宗谦,贾申利,朱天胜,等.真空直流断路器高速操动机构的研究[J].高压电器,2010(3):18-22.
Shi Zongqian,Jia Shenli,Zhu Tiansheng,et al.Investigations on high-speed actuator of vacuum DC circuit breaker[J].High Voltage Apparatus,2010(3):18-22(in Chinese).
[27] 王子建,何俊佳,尹小根,等.基于电磁斥力机构的10 kV快速真空开关[J].电工技术学报,2009,24(11):68-75.
Wang Zijian,He Junjia,Yin Xiaogen,et al.10 kV high speed vacuum switch with electromagnetic repulsion mechanism[J].Transactions of China Electrotechnical Society,2009,24(11):68-75(in Chinese).
[28] 卢彦辉,荣命哲,韩国辉,等.高速电磁斥力机构运动特性影响因素研究[J].高压电器,2015(8):29-34.
Lu Yanhui,Rong Mingzhe,Han Guohui,et al.Research on the influencing factors of motion characteristics of high speed electromagnetic repulsion mechanism[J].High Voltage Apparatus,2015(8):29-34(in Chinese).
[29] 杨浩,吕玮,刘彬,等.电磁斥力快速开关研究[J].高压电器,2016(3):147-154.
Yang Hao,Lü Wei,Liu Bin,et al.New high-speed switch with electromagnetic repulsion mechanism[J].High Voltage Apparatus,2016(3):147-154(in Chinese).
[1] 欧阳文敏, 杨俊, 王成昊, 张升, 吴学光. 500 kV高压直流断路器支架绝缘设计[J]. 电网技术, 2020, 44(3): 1175-1179.
[2] 王华清, 程显, 葛国伟, 杨培远, 程子霞, 谢伟. 中压混合式直流断路器真空短间隙介质恢复特性[J]. 电网技术, 2020, 44(1): 377-384.
[3] 陈争光, 周泽昕, 王兴国, 杜丁香, 温伟杰, 杨亮, 郭雅蓉, 曹虹. 一种基于直流断路器两端电压的混合级联多端直流输电断路器自适应重合闸方法[J]. 电网技术, 2019, 43(7): 2623-2631.
[4] 单任仲, 王世友, 刘闯, 蔡国伟, 姜朋. 双臂架构的混合型直流断路器拓扑结构研究[J]. 电网技术, 2019, 43(6): 2065-2071.
[5] 孙银山, 苟锐锋, 杨晓平, 任军辉, 封磊. 一种新型电感激励换流式高压直流断路器及其仿真研究[J]. 电网技术, 2019, 43(6): 2058-2064.
[6] 张修雅, 袁召, 陈立学, 朱哲晓, 何俊磊, 何俊佳. 电磁斥力机构能量转换效率分析[J]. 电网技术, 2019, 43(5): 1849-1855.
[7] 李威, 吴学光, 常彬, 刘栋, 邹乐. 基于电压变化率故障检测的高压直流断路器保护策略[J]. 电网技术, 2019, 43(2): 554-561.
[8] 刘思奇, 沈兵, 庄劲武, 柯其琛, 雷冉. 逆变电源直流电网快速直流断路器的分析和设计[J]. 电网技术, 2019, 43(12): 4517-4522.
[9] 黄强, 邹贵彬, 高磊, 孙辰军. 基于HB-MMC的直流电网直流线路保护技术研究综述[J]. 电网技术, 2018, 42(9): 2830-2840.
[10] 张宁, 魏晓光, 高冲, 陈龙龙, 高阳. 快速机械开关线圈型电磁斥力机构优化设计[J]. 电网技术, 2018, 42(8): 2512-2518.
[11] 张祖安, 黎小林, 陈名, 何俊佳, 李岩, 许树楷, 袁召, 李艳林, 岑义顺, 赵晓斌. 160 kV超快速机械式高压直流断路器的研制[J]. 电网技术, 2018, 42(7): 2331-2338.
[12] 黄润鸿, 朱喆, 陈俊, 陈名, 邹常跃, 许树楷. 南澳多端柔性直流输电工程高压直流断路器本体故障控制保护策略研究及验证[J]. 电网技术, 2018, 42(7): 2339-2345.
[13] 周猛, 向往, 林卫星, 文劲宇, 左文平. 柔性直流电网直流线路故障主动限流控制[J]. 电网技术, 2018, 42(7): 2062-2072.
[14] 林畅, 庞辉, 常彬, 刘栋, 翟雪冰, 高路, 闫鹤鸣. 基于FPGA的直流断路器仿真建模与延时补偿算法[J]. 电网技术, 2018, 42(5): 1417-1423.
[15] 韩乃峥, 贾秀芳, 许建中, 赵成勇. 孤立MMC站在线平滑接入直流电网的控制策略[J]. 电网技术, 2018, 42(3): 804-811.
[1] . SYMBOLIC ANALYSIS METHOD FOR LOAD FLOW CALCULATION OF POWER SYSTEM[J]. Power System Technology, 2005, 29(10): 25 -29 .
[2] WU Ping LIU Dichen ZHAO Jie ZENG Zheng DU Zhi LEI Qingsheng. Fuzzy Adaptive PID Control-Based Load Following of Pressurized Water Reactor[J]. Power System Technology, 2011, 35(4): 76 -81 .
[3] ZHANG Zhiqiang QIN Xiaohui XU Zhengxiong ZHANG Dongxia LIN Jiming ZHENG Jianchao. Research on Transient Stability of UHV Half-wavelength AC Transmission in the Plan of Sending out Electric Power From Xinjiang Region[J]. Power System Technology, 2011, 35(9): 42 -45 .
[4] . AN ANALYSIS ON MANAGEMENT AND TECHNICAL MEASUREMENTS TO IMPROVE OPERATING RELIABILITY OF AGC SYSTEM IN POWER PLANT [J]. Power System Technology, 2005, 29(18): 35 -38 .
[5] LIN Xiangning YUAN Shuo WENG Hanli LI Zhengtian ZHENG Rongjin. Study on Finite Selectivity Based Regional Protection Suitable for Low-Voltage Microgrids[J]. Power System Technology, 2012, 36(4): 149 -154 .
[6] HAN Jianghong, LIN Changnian, LI Fengyun, FENG Ke, PAN Zhengkui,LIN Chunlong, WEI Wenhui, HAI Xiaotao. A Visio-Based Simulation Training System for Substation Secondary Circuits[J]. Power System Technology, 2012, 36(8): 265 -270 .
[7] ZHAO Xi-ling|ZHANG Xing-mei|DUAN Chang-gui|ZOU Ping-hua. Research on Design Parameters of Solid Oxide Fuel Cell Combined Heat and Power System Based on Factorial Experiment[J]. Power System Technology, 2007, 31(18): 78 -82 .
[8] Han Jun-ke YANG Jing-bo YANG Feng-li LI Feng LI Mao-hua. Value Selection of Slenderness Ratio and Diameter-Thickness Ratio of Steel Tube for 1 000 kV Transmission Steel Tubular Tower Legs[J]. Power System Technology, 2009, 33(19): 17 -20 .
[9] LI Dong BAO Hai. A Power Distribution-Based Method to Calculate Transaction Cost of Generation Right[J]. Power System Technology, 2010, 34(8): 145 -149 .
[10] XU Zhengyu, WANG Ke, SUN Jiantao, ZHAO Xiaoyu, LI Yuan. Research on Characteristics During Latent Period of Partial Discharge Developing Process Under Direct Voltage of Oil-paper Insulation[J]. Power System Technology, 2016, 40(2): 614 -619 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05032083号-3
版权所有:《电网技术》编辑部 电话:010-82812532
技术支持:北京玛格泰克科技发展有限公司