Please wait a minute...
电网技术
 
      设为首页      加入收藏
 
 首页 | 电网技术 | 期刊浏览 | 投稿指南 | 期刊订阅 | 广告服务 | 联系我们 | Email Alert |RSS |留 言 板
电网技术  2018, Vol. 42 Issue (8): 2416-2422    DOI: 10.13335/j.1000-3673.pst.2017.2169
  国家重点研发计划 本期目录 | 过刊浏览 | 高级检索 |
振荡电流作用下的架空线路温升响应计算
王建, 熊小伏, 陈璟, 胡剑
输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市 沙坪坝区 400044
Temperature Rise Response Calculation of Overhead Conductor Under Power Oscillation Current
WANG Jian, XIONG Xiaofu, CHEN Jing, HU Jian
State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University), Shapingba District, Chongqing 400044, China
下载:  PDF(554KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 电力系统发生振荡时的导线温升问题长期被忽视,持续的振荡电流会引起导线温升越限,导致线路受损或引发故障。振荡电流作用下的导线温升响应有别于导线稳态温度计算和短路热稳定校核。针对此问题,首先推导了振荡电流的时域表达式;然后以数值积分的方式计算振荡电流产生的焦耳热,利用暂态热平衡方程计算振荡持续期间的导线温升响应过程;最后,通过典型场景的算例分析,验证了所提方法的有效性。结果表明,振荡周期对导线温升响应影响很小,导线温升响应主要受振荡电流幅值、振荡持续时间和线路运行的实况气象环境影响,在高温无风等恶劣气象条件下,导线温度在较短的时间内会超过短时最高允许温度,因此在系统振荡期间,需要合理设置保护振荡闭锁时间或采取线路热保护措施,避免造成线路损坏或引发连锁故障。
服务
加入引用管理器
E-mail Alert
RSS
作者相关文章
王建
熊小伏
陈璟
胡剑
关键词:  电力系统振荡  输电线路  暂态热平衡  温升响应    
Abstract: Conductor temperature rise is a long-neglected problem for power system oscillating. The conductor temperature will exceed upper safety limit if oscillation is longstanding, leading to conductor damage or causing faults. Conductor temperature rise response under oscillation current is different from conductor temperature calculation on steady state or short-circuit thermal stability calibration. To solve this problem, the time-domain expression of oscillation current was deduced firstly in this paper. Then the numerical integration method was adopted to calculate Joule heat power, and the transient thermal balance equation was used to calculate the process of conductor temperature rise during oscillation. Finally, effectiveness of the proposed method was validated with numerical study of typical scenarios. Results showed that oscillation period has little influence on conductor temperature rise response and it is mainly affected by amplitude of oscillation current, oscillation duration and meteorological environment of transmission line. Under severe weather, conductor temperature will exceed short-time maximum allowable temperature in a relatively short time. So reasonable block time of distance relay or overheat protection is necessary to protect conductor from breakdown or cascading faults during power system oscillation.
Key words:  power system oscillation    transmission line    transient thermal balance    temperature rise response
收稿日期:  2017-10-09                     发布日期:  2018-08-08      期的出版日期:  2018-08-05
ZTFLH:  TM721  
基金资助: 国家重点研发计划项目(2016YFB0900600); 中国博士后科学基金项目(2017M612907)
作者简介:  王建(1986),男,博士后,讲师,通信作者,研究方向为电网风险评估与气象灾害预警、电力系统保护与控制,E-mail:wangrelay@foxmail.com;熊小伏(1962),男,博士,教授,博士生导师,研究方向为电力系统保护与控制、新能源并网故障分析、电网风险评估与气象灾害预等,E-mail:cquxxf@vip.sina.com;陈璟(1995),女,硕士研究生,研究方向为电力系统保护与控制;胡剑(1993),男,博士研究生,研究方向为电力系统保护与控制。
引用本文:    
王建, 熊小伏, 陈璟, 胡剑. 振荡电流作用下的架空线路温升响应计算[J]. 电网技术, 2018, 42(8): 2416-2422.
WANG Jian, XIONG Xiaofu, CHEN Jing, HU Jian. Temperature Rise Response Calculation of Overhead Conductor Under Power Oscillation Current. POWER SYSTEM TECHNOLOGY, 2018, 42(8): 2416-2422.
链接本文:  
http://www.dwjs.com.cn/CN/10.13335/j.1000-3673.pst.2017.2169  或          http://www.dwjs.com.cn/CN/Y2018/V42/I8/2416
[1] 许正亚. 输电线路新型距离保护[M].北京:中国水利水电出版社,2002.
[2] Kosterev D N,Taylor C W,Mittelstadt W A.Model validation for the August 10,1996 WSCC system outage[J].IEEE Transactions on Power Systems,1999,14(3):967-979.
[3] Arango O J,Sanchez H M,Wilson D H.Low frequency oscillations in the Colombian power system-identification and remedial actions[C]//CIGRE 2010.Paris,France:CIGRE,2010:C2_105_2010.
[4] 董明齐,杨东俊,黄涌.2008年冰灾期间华中电网WAMS系统实测低频振荡事件分析[J].华中电力,2008,21(5):22-25.
Dong Mingqi,Yang Dongjun,Huang Yong.Analysis on low frequency oscillation incidents measured by WAMS of Central China Power Grid during the 2008 ice hazard[J].Central China Electric Power,2008,21(5):22-25(in Chinese).
[5] 路晓敏,陈磊,陈亦平,等.电力系统一次调频过程的超低频振荡分析[J].电力系统自动化,2017,41(16):64-70.
Lu Xiaomin,Chen Lei,Chen Yiping,et al.Ultra-low-frequency oscillation analysis of power system primary frequency regulation[J].Automation of Electric Power Systems,2017,41(16):64-70(in Chinese).
[6] 张鹏,毕天姝.HVDC引起次同步振荡暂态扰动风险的机理分析[J].中国电机工程学报,2016,36(4):961-968.
Zhang Peng,Bi Tianshu.Mechanism analysis of transient disturbance risk of subsynchronous oscillation caused by HVDC[J].Proceedings of the CSEE,2016,36(4):961-968(in Chinese).
[7] 李晨,孙海顺,朱鑫要,等.降低次同步谐振风险的大型火电基地经串补线路送出规划和运行方案[J].电网技术,2014,38(1):113-119.
Li Chen,Sun Haishun,Zhu Xinyao,et al.Planning and operation schemes for reducing SSR risk of outward power transmission of large-scale thermal generation bases via transmission line with series compensation[J].Power System Technology,2014,38(1):113-119(in Chinese).
[8] 黄杰,陈武晖,董德勇,等.面向风电场SSO抑制的TCSC参数电磁暂态智能优化方法[J].电网技术,2015,39(9):2411-2417.
Huang Jie,Chen Wuhui,Dong Deyong,et al.EMTP-based smart optimization of TCSC parameters oriented for mitigating wind farm SSO[J].Power System Technology,2015,39(9):2411-2417(in Chinese).
[9] 黄耀,王西田,陈昆明,等.双馈风电场次同步相互作用的机理仿真验证与实用抑制策略[J].电网技术,2016,40(8):2364-2369.
Huang Yao,Wang Xitian,Chen Kunming,et al.SSI mechanism simulation validation and practical mitigation strategy of DFIG-based wind farms[J].Power System Technology,2016,40(8):2364-2369(in Chinese).
[10] 胡应宏,邓春,谢小荣,等.双馈风机–串补输电系统次同步谐振的附加阻尼控制[J].电网技术,2016,40(4):1169-1173.
Hu Yinghong,Deng Chun,Xie Xiaorong,et al.Additional damping control of DFIG series compensated transmission system under sub-synchronous resonance[J].Power System Technology,2016,40(4):1169-1173(in Chinese).
[11] Licari J,Ugalde-Loo C E, Ekanayake J B,et al.Damping of torsional vibrations in a variable-speed wind turbine[J].IEEE Trans on Energy Conversion,2013,28(1):172-180.
[12] 王立新,程林,孙元章,等.补偿双馈风电机组电磁转矩-转速闭环相位滞后特性的传动轴系统阻尼控制[J].电网技术,2014,38(12):3333-3340.
Wang Lixin,Cheng Lin,Sun Yuanzhang,et al.Damping control of drive-train system of DFIG to compensate phase lag characteristics of electromagnetic torque-generator speed closed loop[J].Power System Technology,2014,38(12):3333-3340(in Chinese).
[13] 朱声石,崔柳,董新洲.不受电力系统振荡影响的距离保护[J].中国电机工程学报,2014,34(7):1175-1182.
Zhu Shengshi,Cui Liu,Dong Xinzhou.Distance protection insensitive to power system oscillation[J].Proceedings of the CSEE,2014,34(7):1175-1182(in Chinese).
[14] 柳焕章,周泽昕,周春霞,等.继电保护振荡闭锁的改进措施[J].中国电机工程学报,2012,32(19):125-133,195.
Liu Huanzhang,Zhou Zexin,Zhou Chunxia,et al.Improvement in power swing blocking of line protection[J].Proceedings of the CSEE,2012,32(19):125-133,195(in Chinese).
[15] IEEE Power and Energy Society.IEEE Std.738—2012.IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors[S].New York,USA:IEEE,2012.
[16] CIGRE Working Group B2.43.Guide for Thermal Rating Calculation of Overhead Lines[S].Paris,France:CIGRE,2014.
[17] 中华人民共和国住房和城乡建设部.GB 50545—2010.110 kV~750 kV架空输电线路设计规范[S].北京:中国计划出版社,2010.
[18] 苗世洪,朱永利.发电厂电气部分[M].5版.北京:中国电力出版社,2015.
[19] 崔家佩,孟庆炎,陈永芳,等.电力系统继电保护与安全自动装置整定计算[M].北京:中国电力出版社,1993.
[20] 王梅义. 高压电网继电保护运行与设计[M].北京:中国电力出版社,2007.
[21] 秦文萍,徐红利.“9.1”蒙西电网机组低频振荡现象分析[J].太原理工大学学报,2007,38(1):51-55.
Qin Wenping,Xu Hongli.Analysis for low-frequency oscillation of Generators in Mengxi power grid[J].Journal of Taiyuan University of Technology,2007,38(1):51-55(in Chinese).
[22] 李国柱. 2005—2008年华中电网500 kV系统典型事故统计与分析[C]//中南七省(区)电力系统专业委员会第二十四届联合学术年会,广西桂林,2009,32-36.
[23] 杜治,苏宇,彭昌勇,等.基于多层次启发式动态规划算法的电力系统动态等值[J].电力系统保护与控制,2016,44(17):1-9.
Du Zhi,Su Yu,Peng Changyong,et al.Dynamic equivalent of power system based on global representation heuristic dynamic programming algorithm[J].Power System Protection and Control,2016,44(17):1-9(in Chinese).
[24] 竺炜,唐颖杰,周有庆,等.基于改进Prony算法的电力系统低频振荡模式识别[J].电网技术,2009,33(5):44-47.
Zhu Wei,Tang Yingjie,Zhou Youqing,et al.Identification of power system low frequency oscillation mode based on improved Prony algorithm[J].Power System Technology,2009,33(5):44-47(in Chinese).
[25] 刘志雄,张艳霞,冯康恒,等.基于广域信息跟踪电力系统振荡中心的方法及应用[J].电网技术,2014,38(6):1694-1699.
Liu Zhixiong,Zhang Yanxia,Feng Kangheng,et al.A wide area information based method of tracking power system's oscillation center and its application[J].Power System Technology,2014,38(6):1694-1699(in Chinese).
[1] 李泽文, 谭木子, 彭翰川, 赵廷, 杜昱东. 空间行波传感器的安装位置寻优[J]. 电网技术, 2018, 42(8): 2630-2636.
[2] 陈畅, 杨洪耕, 谈萌. 非标准半波长交流输电线路谐波传输特性分析[J]. 电网技术, 2018, 42(5): 1580-1587.
[3] 丁玉剑, 律方成, 李鹏, 周非凡, 姚修远, 高海峰. ±1100 kV特高压直流杆塔间隙放电特性[J]. 电网技术, 2018, 42(4): 1032-1038.
[4] 乔骥, 路遥, 刘增训, 邹军. 横向风对特高压交直流混合线路地面电场与离子流场分布特性的影响[J]. 电网技术, 2018, 42(4): 1234-1240.
[5] 刘毓, 陆佳政, 罗晶, 章国勇, 何立夫. 架空输电线路山火同步卫星广域监测与杆塔定位[J]. 电网技术, 2018, 42(4): 1322-1327.
[6] 李小鹏, 汤涌, 朱清代, 庞广恒, 张鹏, 甄威. 利用测量波阻抗相位特征的高压直流输电线路纵联保护[J]. 电网技术, 2018, 42(4): 1251-1258.
[7] 吴敏, 王韬, 赵淳, 王佩, 郭钧天, 陈路, 潘佳鑫, 罗飞. 基于过程的输电线路雷电活动描述新方法[J]. 电网技术, 2018, 42(3): 989-995.
[8] 乔骥, 邹军, 鄂天龙, 马磊, 胡楚芸. 有屏蔽线时特高压直流输电线路地面电场与离子流场计算与分析[J]. 电网技术, 2017, 41(7): 2386-2392.
[9] 刘俊, 郭瑾程, 魏占宏, 方万良, 侯俊贤, 项祖涛. 频变输电线路模型中的低阶拟合方法[J]. 电网技术, 2017, 41(4): 1197-1203.
[10] 张月魁, 袁海文, 马晓倩, 陆家榆, 鞠勇, 杨晓洪. 基于离子计数法的直流线路空间电荷密度测量[J]. 电网技术, 2017, 41(2): 663-669.
[11] 李小鹏, 滕予非, 刘耀, 汤涌, 甄威. 基于测量波阻抗的高压直流输电线路纵联保护[J]. 电网技术, 2017, 41(2): 617-623.
[12] 陆俊, 朱炎平, 徐志强, 肖振锋. 面向输电线路监测的无线传感网络可靠路由方法研究[J]. 电网技术, 2017, 41(2): 644-650.
[13] 雷傲宇, 董新洲, 冯腾, 汤兰西. 半波长输电线路短路故障后的故障方向特性[J]. 电网技术, 2017, 41(12): 3832-3838.
[14] 张福轩, 姚修远, 石生智, 丁健康, 李金迪, 丁玉剑, 高海峰. ±1100kV直流输电线路带电作业屏蔽防护研究[J]. 电网技术, 2017, 41(11): 3407-3413.
[15] 王东来, 卢铁兵, 陈博, 甄永赞, 谢莉, 鞠勇, 刘元庆. ±1100kV特高压直流输电线路邻近树木时合成电场建模计算与特性研究[J]. 电网技术, 2017, 41(11): 3441-3447.
[1] GOU Moufa, CHEN Jingjie, ZHANG Weijun, YANG Gengjie, MIAO Xiren. A Novel Approach for Fault Arc Extinguishing and Feeder Selection in Distribution Networks Based on Single-Phase Cascade H-Bridge Converter[J]. Power System Technology, 2015, 39(9): 2677 -2684 .
[2] MEI Jie, GAO Ciwei. Considerations of Traffic Characteristics in Research of Grid Integration of Electric Vehicles[J]. Power System Technology, 2015, 39(12): 3549 -3555 .
[3] MA Meiting, YUAN Tiejiang, CHEN Guangyu, CAI Gaolei, PENG Shengjiang, ZHANG Zengqiang. Analysis on Economic Benefit of Energy Storage in Auxiliary Service of Wind Power[J]. Power System Technology, 2016, 40(11): 3362 -3367 .
[4] . Wave Reflection Energized by Multi-Pulse Width Modulation Sources in Distributed Power System [J]. Power System Technology, 2006, 30(1): 19 -22 .
[5] ZHONG Wu-zhi SONG Xin-li TANG Yong BU Guang-quan WU Guo-yang LIU Tao. Small Signal Stability Analysis for UHV AC/DC Power Grids[J]. Power System Technology, 2010, 34(3): 1 -4 .
[6] ZHANG Jianhua SU Ling CHEN Yong SU Jing WNAG Li. Energy Management of Microgrid and Its Control Strategy[J]. Power System Technology, 2011, 35(7): 24 -28 .
[7] CHEN Jiming, WANG Hui, ZHANG Zhihua. Research on Equivalent Accuracy of Wind Farm Composed of DFIGs[J]. Power System Technology, 2014, 38(7): 1867 -1872 .
[8] LI Ning, WANG Yue, WANG Zhao’an. A Double Modulation Wave Carrier-Based PWM Strategy for Three-Level Neutral Point Clamped Converter[J]. Power System Technology, 2014, 38(3): 707 -714 .
[9] TANG Xiaojun, XIE Yan, LUO Hongmei, CHENG Lun, CAO Shujiang, CAO Yuan. Assessment Method and Instance of Provincial Grid Adaptation After UHV Line Connection[J]. Power System Technology, 2017, 41(5): 1476 -1483 .
[10] YU Qiang, SUN Huadong, ZHONG Wuzhi, GU Zhuoyuan, JIA Junchuan, YI Jun. Stability Characteristics and Control Measures of Northeast Power Grid Integrated With Zhalute-Qingzhou UHVDC Transmission Project[J]. POWER SYSTEM TECHNOLOGY, 2018, 42(7): 2023 -2029 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05032083号-3
版权所有:《电网技术》编辑部 电话:010-82812532
技术支持:北京玛格泰克科技发展有限公司