Please wait a minute...
电网技术
 
      设为首页      加入收藏
 
 首页 | 电网技术 | 期刊浏览 | 投稿指南 | 期刊订阅 | 联系我们 | 广告服务 | RSS |留 言 板
电网技术  2018, Vol. 42 Issue (7): 2073-2080    DOI: 10.13335/j.1000-3673.pst.2018.0416
  支撑新能源跨区输送的新型电网技术 本期目录 | 过刊浏览 | 高级检索 |
半波长输电线路潜供电弧工频谐振作用机理及优化控制方案
张媛媛1, 2, 王毅1, 韩彬2, 宋修友1, 班连庚2, 项祖涛2, 宋瑞华2
1.北京交通大学 电气工程学院,北京市 海淀区 100044;
2.中国电力科学研究院有限公司,北京市 海淀区 100192
Power Frequency Resonance Mechanism of Secondary Arc and Its Optimal Control Scheme for Half-Wave Length Transmission Lines
ZHANG Yuanyuan1, 2, WANG Yi1, HAN Bin2, SONG Xiuyou1, BAN Liangeng2, XIANG Zutao2, SONG Ruihua2
1. School of Electrical Engineering, Beijing Jiaotong University, Haidian District, Beijing 100044, China;
2. China Electric Power Research Institute, Haidian District, Beijing 100192, China
下载:  PDF(570KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 半波长输电线路结构特殊,单相重合闸过程中潜供电弧产生机理中,除与常规线路一致的回路间耦合作用外,还存在一种工频谐振激发作用机理。具体地,在潜供电流阶段,当线路中部发生故障时,故障相存在与工频接近甚至相等的自振频率;在电弧熄灭后的恢复电压阶段,当故障点位于线路两侧端部时,故障相也存在与工频较为接近的自振频率。从而使得处于谐振位置故障点的潜供电流与恢复电压明显高于其它故障位置。基于该理论,综合考虑弧道电阻、传输功率、系统网络结构等诸多因素,深入研究了特高压半波长线路潜供电流和恢复电压稳态、暂态及分布特性,诠释了诸多不同于常规输电线路的独特属性。在此基础上,从破坏谐振条件角度,提出沿线快速接地开关(high speed grounding switch,HSGS)配置方法及故障点附近3组HSGS动作的策略;确定了特高压半波长线路沿线7组HSGS的控制方案,可满足1 s重合闸时间要求;从而完善了半波长输电线路潜供电弧理论,优化了HSGS控制方案。
服务
加入引用管理器
E-mail Alert
RSS
作者相关文章
张媛媛
王毅
韩彬
宋修友
班连庚
项祖涛
宋瑞华
关键词:  半波长输电  潜供电流  恢复电压  工频谐振  高速接地开关  控制方案  特高压    
Abstract: Because of special structure of half wavelength transmission line (HWLL), there is a mechanism of power frequency resonance excitation for HWLL secondary arc during single-phase reclosing, in addition to coupling between circuits as conventional. Concretely, when a fault occurs in middle section of HWLL, the natural frequency of fault phase in stage of secondary arc current is close or even equal to power frequency. When a fault occurs in a terminal of HWLL, its natural frequency in stage of voltage recovery is close to power frequency. Therefore, the secondary arc current and recovery voltage at the fault positions of power frequency resonance are obviously higher than those in other fault positions. Based on above theory, this paper studied the characteristics of steady and transient states and distribution of secondary arc current and recovery voltage for UHV HWLL, considering factors such as arc resistance, transmission power, system network structure, etc. These interpret its many unique properties different from conventional transmission lines. Then, by undermining resonance condition, a configuration method of high speed grounding switch (HSGS) along HWLL and action strategy of three groups of HSGS near the fault position are put forward. The control scheme of seven groups of HSGS along UHV HWLL is determined, meeting requirement of 1 s reclosing time. Thus, the secondary arc theory of HWLL may be further completed, and HSGS control scheme can be optimized.
Key words:  half-wave length transmission (HWLL)    secondary arc current    recovery voltage    power frequency resonance    high speed grounding switch (HSGS)    control scheme    UHV
收稿日期:  2018-03-01                出版日期:  2018-07-09      发布日期:  2018-07-09      期的出版日期:  2018-07-09
ZTFLH:  TM721  
基金资助: 国家电网公司科技项目(交流半波长输电电磁暂态特性及控制措施研究(XT71-16-005))
作者简介:  张媛媛(1982),女,博士研究生,工程师,通信作者,研究方向为超/特高压输电过电压及电磁暂态仿真、半波长输电技术,E-mail:zhangyy@epri. sgcc.com.cn;王毅(1958),男,博士,教授,博士生导师,研究方向为智能电器、电力设备在线监测、放电在环保中的应用。
引用本文:    
张媛媛, 王毅, 韩彬, 宋修友, 班连庚, 项祖涛, 宋瑞华. 半波长输电线路潜供电弧工频谐振作用机理及优化控制方案[J]. 电网技术, 2018, 42(7): 2073-2080.
ZHANG Yuanyuan, WANG Yi, HAN Bin, SONG Xiuyou, BAN Liangeng, XIANG Zutao, SONG Ruihua. Power Frequency Resonance Mechanism of Secondary Arc and Its Optimal Control Scheme for Half-Wave Length Transmission Lines. POWER SYSTEM TECHNOLOGY, 2018, 42(7): 2073-2080.
链接本文:  
http://www.dwjs.com.cn/CN/10.13335/j.1000-3673.pst.2018.0416  或          http://www.dwjs.com.cn/CN/Y2018/V42/I7/2073
[1] Hubert F J, Gent M R.Half-wavelength power transmission lines[J].IEEE Transactions on Power Apparatus and Systems,1965,84(10):965-974.
[2] Prabhakara F S, Parthasarathy K, Ramachandra Rao H N.Analysis of natural half-wave-length power transmission lines[J].IEEE Transactions on Power Apparatus and Systems,1969,88(12):1787-1794.
[3] Prabhakara F S,Parthasarathy K,Ramachandra Rao H N.Performance of tuned half-wave-length power transmission lines[J].IEEE Transactions on Power Apparatus and Systems,1969,88(12):1795-1802.
[4] lliceto F, Cinieri E.Analysis of half-wave length transmission lines with simulation of corona losses[J].IEEE Transactions on Power Delivery,1988,3(4):2081-2091.
[5] Gatta F M, Lliceto F.Analysis of some operation problems of half-wave length transmission lines[C]//AFRICON '92 Proceedings,1992,59-64.
[6] Aredes M, Portela C, Van Emmerik E L,et al.Static series compensators applied to very long distance transmission lines[J].Electrical Engineering,2004,86(2):69-76.
[7] Dias R,Santos Jr G,Aredes M.Analysis of a series tap for half-wavelength transmission lines using active filters[C]//IEEE 36 th Power Electronics Specialists Conference,2005,1894-1900.
[8] Maria Cristina Tavares, Portela Calos M.Half-Wave length line energization case test-proposition of a real test[C]//International Conference on High Voltage Engineering and Application.Chongqing,China,2008:261-264.
[9] 刘振亚. 特高压电网[M].北京:中国经济出版社,2005.
[10] 刘振亚. 中国特高压交流输电技术创新[J].电网技术,2013,37(3):1-8.
Liu Zhenya.Innovation of UHV AC transmission technology in China[J].Power System Technology,2013,37(3):1-8(in Chinese).
[11] 舒印彪,张文亮.特高压输电若干关键技术研究[J].中国电机工程学报,2007,27(31):1-6.
Shu Yinbiao,Zhang Wenliang.Research of key technologies for UHV transmission[J].Proceedings of the CSEE,2007,27(31):1-6(in Chinese).
[12] 林集明,郑健超.特高压半波长交流输电技术经济可行性初步研究总结报告[R].北京:中国电力科学研究院,2010.
[13] 梁旭明. 半波长交流输电技术研究及应用展望[J].智能电网,2015,3(12):1091-1096.
Liang Xuming.Technology research and application prospect of half-wavelength alternating current transmission[J].Smart Grid,2015,3(12):1091-1096(in Chinese).
[14] 韩彬,林集明,班连庚,等.特高压半波长交流输电系统电磁暂态特性分析[J].电网技术,2011,35(9):22-27.
Han Bin,Lin Jiming,Ban Liangeng,et al.Analysis of electromagnetic transient characteristics of UHV semi-wavelength AC transmission system[J].Power System Technology,2011,35(9):22-27(in Chinese).
[15] 孙秋芹,汪沨,刘洋,等.特高压输电线路潜供电流的暂态特性研究[J].电工技术学报,2016,31(3):97-103.
Sun Qiuqin,Wang Feng,Liu Yang,et al.Study on transient characteristics of latent potential current in UHV transmission lines[J].Journal of Industrial Technology,2016,31(3):97-103(in Chinese).
[16] 孙秋芹,李庆民,陈全,等.特高压半波长输电线路潜供电弧低压模拟实验研究[J].高电压技术,2012,38(2):350-358.
Sun Qiuqin,Li Qingmin,Chen Quan,et al.Experimental study on low-voltage simulation of submersible arcs for UHV half-wavelength transmission lines[J].High Voltage Technology,2012,38(2):350-358 (in Chinese).
[17] 秦晓辉,张志强,徐征雄,等.基于准稳态模型的特高压半波长交流输电系统稳态特性与暂态稳定研究[J].中国电机工程学报,2011,31(31):66-76.
Qin Xiaohui,Zhang Zhiqiang,Xu Zhengxiong,et al.Stability and transient stability of UHV half-wavelength AC transmission system based on quasi-steady-state model[J].Proceeding of the CSEE,2011,31(31):66-76(in Chinese).
[1] 马晓伟, 徐瑞, 滕贤亮, 曹斌, 任冲, 丁恰, 王文倬. 基于事件驱动的西北电网紧急备用支援技术[J]. 电网技术, 2018, 42(8): 2645-2650.
[2] 杨万开,贾一超,雷霄. 锡泰直流工程分层接入500/1000 kV交流电网仿真计算与现场系统试验结果分析[J]. 电网技术, 2018, 42(7): 2255-2261.
[3] 吴迪, 王佳明, 李晖, 王智冬, 张宁, 康重庆. 以促进可再生能源消纳为目标的我国西北-西南联网容量与送电时序研究[J]. 电网技术, 2018, 42(7): 2103-2110.
[4] 刘守豹, 张星海, 曾宏, 雷潇, 廖文龙. 特高压直流接地极线路内部过电压机理及特性分析[J]. 电网技术, 2018, 42(7): 2366-2372.
[5] 金一丁, 于钊, 李明节, 蒋维勇. 新一代调相机与电力电子无功补偿装置在特高压交直流电网中应用的比较[J]. 电网技术, 2018, 42(7): 2095-2102.
[6] 赵峰, 吴涛, 谢欢, 代倩, 梁浩. 发电机励磁辅助控制功能对特高压直流送端动态无功支撑能力的影响研究[J]. 电网技术, 2018, 42(7): 2262-2269.
[7] 陈秀娟, 陈维江, 宋继军, 赵大翠, 贺子鸣, 田宏伟, 时卫东. 特高压交流开关型可控避雷器稳态电压分布[J]. 电网技术, 2018, 42(6): 1987-1991.
[8] 何畅, 谢强, 杨振宇. 1100kV特高压气体绝缘开关套管-支架体系抗震性能加固试验研究[J]. 电网技术, 2018, 42(6): 2016-2022.
[9] 陈畅, 杨洪耕, 谈萌. 非标准半波长交流输电线路谐波传输特性分析[J]. 电网技术, 2018, 42(5): 1580-1587.
[10] 何慧雯, 陈杉杉, 贺恒鑫, 邹妍晖, 余军, 陈维江, 肖冕. 电晕空间电荷对特高压直流输电线路地线雷电屏蔽性能的影响[J]. 电网技术, 2018, 42(4): 1039-1047.
[11] 班连庚, 郑彬, 周佩朋, 韩彬, 项祖涛, 孙岗, 王晓彤, 王东阳, 刘北阳, 滕文涛, 刘英志. 特高压交流变压器选相合闸技术研究及工程应用[J]. 电网技术, 2018, 42(4): 1226-1233.
[12] 刘泽洪, 郭贤珊, 乐波, 付颖, 祝全乐. ±1100 kV/12 000 MW特高压直流输电工程成套设计研究[J]. 电网技术, 2018, 42(4): 1023-1031.
[13] 刘云. 我国特高压直流输电通信技术的巴西工程本地化通道设计方案[J]. 电网技术, 2018, 42(3): 973-980.
[14] 廖瑞金, 邵山峰, 成立, 杨丽君, 赵学童. 特高压换流变压器油纸绝缘交直流击穿特性及选型[J]. 电网技术, 2018, 42(2): 387-392.
[15] 于昕哲, 周军, 刘博, 吴浩哲, 徐跃能, 张乔根. ±1100kV线路长串盘形绝缘子污闪特性研究[J]. 电网技术, 2018, 42(2): 393-399.
[1] XIONG Jun|LI Cheng-rong|ZHAO Lin-jie|ZHANG Shu-qi|BI Yong-jiang. A Study on Leakage Current Properties of Composite Insulators in Constant Voltage Clean Fog Environment[J]. Power System Technology, 2007, 31(15): 70 -74 .
[2] . A Study of Distribution Network Feeding Modes Selection Based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation[J]. Power System Technology, 2006, 30(22): 67 -71 .
[3] . Study on Brittle Fracture of Boron-Free FRP Rod of Composite Insulator[J]. Power System Technology, 2006, 30(12): 42 -46 .
[4] FU Shu-ti. Summary on 2006 Power System Operation and Control and Recommendations[J]. Power System Technology, 2007, 31(10): 1 -9 .
[5] . RESEARCH OF POWER SYSTEM SECURITY AND RELIABILITY CONSIDERING RISK UNDER ENVIRONMENT OF ELECTRICITY MARKET[J]. Power System Technology, 2005, 29(3): 44 -49 .
[6] WANG Yun-ling|ZENG Jie|ZHANG Bu-han|MAO Cheng-xiong. Dynamic Voltage Conditioner Based on Ultracapacitor Energy Storage System[J]. Power System Technology, 2007, 31(8): 58 -62 .
[7] . A New Algorithm of Reliability Evaluation for Complex Medium Voltage Distribution Networks Based on Implified Network Model[J]. Power System Technology, 2006, 30(15): 72 -75 .
[8] . Wide Area Dynamic Measuring System of Northeast Power Grid[J]. Power System Technology, 2006, 30(17): 70 -73 .
[9] . A New Index of Nodal Static Voltage Stability and Load Shedding Method[J]. Power System Technology, 2006, 30(10): 8 -12 .
[10] . Design of Communication Protocol Implementation Interface Based on Agent Technology[J]. Power System Technology, 2006, 30(10): 100 -104 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05032083号-3
版权所有:《电网技术》编辑部 电话:010-82812532
技术支持:北京玛格泰克科技发展有限公司